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We obtain, for entire functions of exponential type, a complementary result and
a generalization of a quadrature formula with nodes at the zeros of Bessel functions.
Our formula contains a sequence of rational fractions whose properties are
studied.  © 1998 Academic Press

1. INTRODUCTION

Given any complex number «, the function

z & — 1)k
zx( ) Z ( ) 2k (1)

2R Tk 4ot 1)

is an even entire function of exponential type 1. Here J,(z) is the Bessel
function of the first kind of order «. Let j, = j,(a), k= +1, +£2, ..., be the
zeros of J,(z)/z* ordered such that j_, = —j, and 0 < |/,| < |/,| <

An exact quadrature formula with zeros of Bessel functions as nodes has
been proved in [2].
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THEOREM A. Let R(a)> —1. For all entire functions f of exponential
type 2t such that f(x) = O(|x| %), x > + o0, with § >2R(«) + 2, we have

J, e A=

@) e

The growth condition on f has been relaxed in [3] assuming that
o> —1.

THEOREM B. If a> —1 then (2) holds for every entire function f of
exponential type 2t such that x***'( f(x)+ f(—x)) belongs to L'[0, ).

In this paper we first obtain a complementary result related to (2). We
also give a result which may be seen as a generalization of (2).

2. STATEMENT OF THE RESULTS

We note that the right-hand side of (2) vanishes whenever f(z) is
replaced by (J,(7z)/(tz)*) f(z). Also, the asymptotic formula [ 6, Sect. 7.21]

2\ 12 an 7 1
C R AR

implies that J,(x) = O(|x| ~'?), x > +co. Thus, if f is an entire function of
exponential type 7 such that f(x)= O(|x| ~°), x > + 00, with § > R(a) + 3,
R(a) > —1, then

J X e+ (=) de =0, (3)

Applying (3) to a function of the form 1/x*(f(x)— f(0)), where f may
be supposed to be even, and using the formula (see [6, p.391])
o x* 7, (x) dx =2"""T'(a), we obtain

o

T [ L)) + f(—x) (4)
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The particular case a= —4% of (3), applied to f(z) and f(z—(n/27)),
readily leads us to the formula [4, p. 109]

Jw e™f(x) dx=0.

Also, applying (4) with a=3, we obtain the well-known formula
[5, p. 1097

1j°0 sin(rx)f(x) dx.

— % X

Note that we obtain the last two formulae under the growth condition
f(x)=0(|x] ~°), x » + o0, respectively with J > 1 and § > 0, although these
formulae are valid for more general functions.

Our first theorem is a generalization of (4).

THEOREM 1. Let p be a nonnegative integer and R(o) >p. For all entire
functions f of exponential type © such that f(x)= O(|x| %), x > + o0, with
0> R(a) —2p — 1%, we have

J, e+ A =0 d

_ L e pt)) S20) )
L (p—=J) t(2)
The function defined by (1) is called Spherical Bessel function whenever
a=n+1, n being an integer. Since I'(n + 1) =ﬁ (2n)!/2*n!, n=0,1,2, ..,
we deduce from Theorem 1 the following

COROLLARY. Let p and n be nonnegative integers, p <n. For all functions
f of exponential type t such that f(x) = O(|x| ~%), x = + o0, with 6 >n—2p,
we have

[7 2, ) fx) d

= £ L) -+ L0 g

TR (2))!

For p=n, Eq. (6) reduces (with 6 > —n) to
0o n—1/2 p (2/)
j J"H/Z(Tx)f(x) dx:\/ 2n T Z <”>f (0) (7)
j=0

1/2 . 2j ‘
e x"HV 2"p! j) ¥
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Before we state our second theorem, it is convenient to introduce some
notations. We set N(0):=0, N(1):=0 and

N(p):= ) [p] for p>2. (8)

Here, [a] is the integral part of the real number a. We also set
u(0; a) := 1/ and

» —1
u(p; a) := <2["’/2] ]—[ oc+v[”/“]> for p=1.  (9)

THEOREM 2. Let p be a nonnegative integer and R(o) >p. For all entire
Sfunctions | of exponential type 2t such that f(x)= O(|x]| ~°), x = + 00, with
0>2R(a) —2p, we have

e + A=) d

= Z{( zp»z <f< >+f< >>

22“( Ia+1))? 2 74(0)
1_20(7217 ; p ]9 )RN(p j)( ) 21(2])“

where Ry ;(a) is a polynomial in o of degree N(j) for 0<j<p, whose
leading coefficient is 2L/2].

(10)

Equation (10), applied to a function of the form (J(zz)/(zz)*) f(z), gives
a non explicit version of (5). In fact, Theorem 1 will be used to obtain
informations on the sequence e(p; a), p=0, 1, 2, ..., defined by

e(p;a) :==u(p, ) RN(]))(O(')- (11)

The sequence e(p;a), p=0,1,2,.., satisfies the following recurrence
relation.

THEOREM 3. Let o be a complex number, a #0, +1, +2, ..., and let p be
a nonnegative integer. We have e(0; o) = 1/a and

(=)' Tr(a+)e(p—kia)
e(P—f-L O()_kgo 22l\+2(k+1)'[‘(0{+k+2)
I'(a—p—1)
221’+2(p+1)'r(a+1)
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From Theorem 3 we will deduce the generating function of the sequence
e(p;a), p=0,1,2, ... This generating function will be used to prove that
the Ry,(«) of (10) are polynomials in o.

THEOREM 4. Let ¢ (z):=2T (o + 1)(J(2)/z%). We have, for a0,
i 13 iza ()

¢ (/7)) &
P2V S elpia)zn, (13)
N

where the series converges for |z| < |j ()|

3. LEMMAS
The proof of Theorem 1 is based on the following result.

LeMMA 1. Let p be a nonnegative integer and p<WR(a)<2p+1i. If
—1<A<1 then we have

S P (—1)j2°"2p+2f’1r(oc—p+j) yE
x>~ 1J (x) cos(Ax) dx = - -
L Eo (p =) (2))

(14)

Proof. Let B, u, v be complex numbers and let a, b be real numbers. It
is known [6, Sect. 13.4] that

f%J“athUm)d 2T 2+ v—B+1))
0 X7 T T T+ O ITA2(f 4 —v+ 1))

1 1 b?
xF<2<u+v—ﬂ+1),2(v—/3—ﬂ+1>,v+1,a2>

(15)
provided that 0 <b < a and that the integral converges. Here,

. af z  a(a+1)p(p+1) 2°
Fafra=1+2"9v "0y o

is the Gaussian hypergeometrlc function. We take, in (15), u=a, v=—1,
a=1,b=/ and f= —a+2p+ 3 We obtain

o a—2p—1

j x*~2 1] (x) cos(Ax) dx = — Ia—p) F <O‘ p- P»»’12>’
0 p:
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from which (14) follows for 0 <1< 1. The result holds by continuity for
A=0,1 and by symmetry for —1<1<0. |

The basic idea, in the proof of Theorem 2, is to apply (2) repeatedly to
a function of the form

1 2)\?
e.1=5 (0~ (2rae =) o), (16)

z

where f(z) is an even entire function.

LEMMA 2. Let f be an even entire function and j a nonnegative integer.
We have

(2/) 1 (2/+2)
(0= (2j+2)(2j+1)f ©)

(=17 (2 (Mo +1)> T'(2a +2j +3)
292G+ ) TRoA+j+2)( Lo+ j+2))?

S0).(17)

Proof. We use the formula [ 6, Sect. 5.4]

JAz) i (—1)/ TQa+2j+1) o
2T A 2T ok j+ (T (ot j+ 1)

in conjunction with

& /0)
Eo 2

PR |

We wil also need the following result [1, p. 148], known as Faa Di
Bruno’s formula.

Lemma 3. We have, for j=1,2, ..,

J J
(F(Gz)'= ) Y ki, k) FO(G 1_[ (GY(z))%,  (18)

r=1 #n(j,r) =
where c(ky, ... k;):=jl/k,!- (1!)k1~~~(j!)kf and n(j, r) means that the
summation is extended over all nonnegative integers k, .., k; such that

ky4+2ky+ - + jk;=jand ky+ky+ --- +k;=r.

Finally, we prove a crucial lemma, the first step in the proof of
Theorem 2.
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LEMMA 4. Under the hypothesis of Theorem 2, we have

| e A=) d

B 2 Ee Jioc 2p—2 ]7k _]71‘
“mm L GOP <f (r)” ( r>>
L2t D) i VAT

LA rzj(2j)! ’

(19)

where the e(j; ), 0 < j<p, are rational fractions in o.

Proof. Without loss of generality, we may suppose that f(z) is even and
7= 1. The function g,(z) defined by (16) is then an even entire function of
exponential type 2.

Now we prove the lemma by induction on p. For p =0, we use (2) where
fis replaced by g,; we obtain

o0 et JZoc 2
J, ) d = 22 AL (20)

For R(«) > 0 this equality may be written in the form

RN Je 2>(I'(a+1))
J ) = 22 Gy (U 1) e
since [ 6, p.403]
©JAx) (20 T(x—k)
I N P ) Mt k1 1) (&)

for k=0,1,2,.. and R(a)>k. Thus the lemma is valid for p=0 and

e(0;a)=1/a
Suppose that (19) holds for some positive integer p. Replacing f by g, in
(19), we obtain

2 J\J x2*=2 =g (x)dx
0

0 2<x 2p—4 ) P g((x2j)(0)
—4 ) 422+ 1)) , Y23
Z, G MU 0 T dpm i Tonn (23)
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For R(a) > p + 1 this equality may be written, by Lemma 2 and (22), in the
form

2 ro X277 3(x) dx
0

200 —2p—4

. e

k=1

2/ +2)(
e(p—j;oc)f ©

+2°( (a4 1)) < : 7(2],_‘_2)!

I M~

+€(P+1;Ot)f(0)>, (24)
where

P(=1)(Ma+1)>TRo+2j+3)e(p—j;a)
Aptlia): Z 272+ ) T2t j+2)(T (ot +2))

(2p+2) I(a—p—1)
222 (p+ )2 T(a+p+2)

(25)

Obviously, if each e(p—j; ), 0<j<p, is a rational fraction in a, so is
e(p+ 1; o). This completes the proof of the lemma. ||

4. PROOFS OF THE THEOREMS

Proof of Theorem 1. According to the classical theorem of Paley and
Wiener, an entire function of exponential type z, which belongs to
L*(— 0, o0), has a representation of the form

fer=[" e s, (26)

-7

where y € L*(—1, 7). So, using Lemma 1,

j: X (x) <f <j> +f<—f>> dx

=2f°c j >1//(t)dtdx
[ W)
L ET e

{2 ) [0
D Py P

tx
x*~2=1J (x) cos <
T

1y (t) dt
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which proves Theorem 1 in the case f'e L?(— o0, o0). In general we con-
sider a function of the form (sin(ez)/ez)™ f(z), for some positive integer m,
and let ¢ —» 0. The passage to the limit is easily justifiable. ||

The relation (25) is a recurrence relation for the sequence e(p;a),
p=0,1, ... Theorem 3 gives a simpler one.

Proof of Theorem 3. Given an entire function of exponential type =1
such that f(x) = O(|x| %), x - + oo, with 6 > R(«) —2p — 1/2, the function
h(z):=(J,(z)/z%) f(z) satisfies the hypothesis of Lemma 4. Hence,

[ ) + A=) d

) P ) h(2j)(0)
=22 (I(oe+ 1))2j§0 e(p—jsa) (2)!
(—1) % e(p—jia) S#(0)
=2%( 1))
Mo ,Zo kzo VK= k) Ta+j—k+1)  (2))!

Ye(p—j—kia) f*(0)

=2%(I(a+1)) ' : 28
Ha Z go 22"k'F(oc+k+1) (2))! (28)
It follows from Theorem 1 that
e(p—j—kia) f0)
I'(a+1))
ij /(ZO 22kk'FO(+k+l) (2.])
P 22.1*2F1"'(O(_ +') (2./')(0)
_¥ RASIEESU (29)
<o (p =) (2)!
Since f'is arbitrary, we conclude that
IS (=D e(p—j—kyoa) 2¥"I(o—p+])
I 1))? ~ =
Fe+ D Y SR rar ks ) -
k=0 (30)
0<j<p,

which is equivalent to (12) for M(a)>p. Since both sides of (12) are
rational fractions in «, it is clear that this formula remains valid for any
a#0, +1, +2, ... 1

Proof of Theorem 4. Let E,(z):=3r_,e(p;a)z". Multiplying both
sides of (12) by z”*' and summing over p=0, 1, 2, ..., we obtain
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o (=D*Ta+1)e(p—k;a)

- 1 p+1_ p+1
pgo p+ 0( z pzo kZO 22k+2 k+1)' F(O(+k+2)
F(O(_p_l) p+1
R 31
+3 2y ) Tt 1) (3D

p=0

Permutting the order of summation, we get, after some obvious changes of
variables,

(="'t , & Ta=p)

E,(z )—f—Ea( ) Z o Tat sl El TVAPESTRE (32)
whence
< (=D)rr(e+1l) &  Ila=p)
EOL(Z)[E,0 2\ Matptl)” —pgo P Tt 1) (33)
We have
N (=" /2
20 27p (a4 p+1) (/)"

Also, using the relation I'(w) I'(1 —w) =n/sin(nw) with w=a— p, we see
that

Ia-p) _,_ 727" J (/2)
o 27p! sin(na) (/2) "

We then deduce from (33) that

Efz)= i A (34)
2% sin(ra)(M(a+ 1)) J(/2)

I M8

p

which reduces to (13) after another application of the relation I"(w) I'(1 —w)
=n/sin(zw) with w= —oa. |

Proof of Theorem 2. It remains to prove, in view of Lemma 4, that the
functions Ry, (), p=0, 1,2, .., appearing in the right-hand side of (10),
are polynomials in « of degree N(p) with leading coefficient 21721, The
function R ,(«) is related to e(p; ) by (11); it is thus a rational fraction
in o

Our first goal is to obtain an explicit formula for Ry, (). It is clear,
from Theorem 3, that Ry )(«) = 1. We may thus assume that p is a positive
integer. We have, using the generating function (13),



EXPLICIT QUADRATURE FORMULAE

277
L(d_.(/2)\"
prepo = (ST oo
REANTVE )
_ I(x=p) +i<p> Ia—p+J) < 1 >‘“
2rMa+1) 5\ 27 UM (a+1) \g,(/7)
(z=0). (35)
We use Lemma 3 with F(z)=1/z, G(z)=¢1(ﬁ) and z=0. We obtain a
formula for (1 /¢)a(ﬁ))‘” (z=0) which, once we substitute in (35), results
in
ple(pia)——0=P)  § § ¥ <p>(—1)’+fr'c(k k)
B 27+ 1) 20 2 50\ IR
I'lac—p+)) (a4+1) \*
27 (a+1) El <F(a+v+1)> ’ (36)

So, we obtain the explicit formula

Ryp(2) = 20721 — p) f[ (o4 v)t <2r( + Z Z > <p>

v=1 21’]_'a+1 Jj=1 r=1 =n(jr) J
L Ia—p+j) ¢ a+1) \*
-1y rlelky, . k;
(=Dt )22"Foc+1 1:[ <F(a+v+1)
(37)

In (37), each term of the form

r I(a+1) \* J . .
l_[ (o 4 v)Lr] 1_[ 7( Y H(oc—i—v[”/"] n o4 v) "kt e k)
) — I'(oc+v

v=1 v=1

is, for 1 <j< p, a polynomial in «; indeed, we have

1

k,+ - +k,<=(vk,+ - + jk;) <j/v<p/v,

<

I<v<j,

and so [ p/v]—(k,+ --- +k;) >0. It then follows from (37) that the only
possible poles of the ratlonal fraction Ry, () are =0, 1, ..., (p—1).
Now we will show that

lim (a—k) Ryp(0) =0, k=01, ... (
a—k

p—1, (38)

from which we infer that no pole of Ry, () could exist
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The left-hand side of (38) can be evaluated from (37); we find that

— 1) ko321 =2p() _ P
(—1) k=p) {1 (4 yyiom

v=1

<(p k)! ,Zl rzl n(,Z”( >

(—D)rlelky, .. k) £ k! N\~
kM <(k+v)!> > (39)

v

ilir} (a—k) RN(p)(‘x): A

Next we will prove that the right-hand side of (39) is equal to zero. Let

Jl2i/z) & 1 )
—F = —_— 7"
(2i/2)F JZ02! (k+v)!

We have, for k=0,1, ..,p—1,

k P

_§ (P ey z=0) (—— ) (2=
—j0<j><z‘hk< e ) =

(T 4 3 () ()

Thus (38) holds. It is clear from (37) that Ry, («) has degree N(p)=
>?_,[p/v]. Its leading coefficient is

hi(z):=

R roJ .
lim W=2[31’/2]21’<1+Z Yoy <’;.>(—1)"+«7r!c(k1,...,k,)>

*= Jj=1 r=1 a(jr)

=2Lr2]
where the last step uses Lemma 3 with F(z)=1/z, G(z)=e¢~ 7 and z=0.
This completes the proof of Theorem 2. |

5. CONCLUDING REMARKS

In this final section we make some additional comments concerning our
results and we give a few examples.



EXPLICIT QUADRATURE FORMULAE 279
The special case o =2p + 1 of Theorem 1 leads us to the following result:

if fis an entire function of exponential type 7 such that f(x)= O(|x| °),
x — + 00, with § > 1, then we have

J, T (e + 1=

<p +J><2> r £O0),  p=0,1,... (40)
2j T

Mx.

0

J
Applying (5) with p=0 to a function of the form [Tf_, J, (a;z)/z*, we
obtain the following known result [ 6, p.419]:

” M—1 £ w1 - a;’
x* =M (tx J (a;x)dx=2*""~ 41
jo ( ),-1]1 () 1]1 oo @
where M :=3"_ | u;, Y5_ la;| <7 and 0 < R(x) <R(M) +k/2+1/2.

The first polynomials appearing in Theorem 2 are Ry(a)=1, R,(a)=
20+ 5, Ry(a)=20>4+ 130423, Ry(a)=4a*+ 560>+ 303a> + 748 + 677,
Rs(o) = 4o’ + 84a* + 7310 4+ 33190 + 7821 + 7313. It is empirically evi-
dent that the coefficients of R, (a) are positive integers. Finally, we note
that e(p; «) = O(1/a?* 1) as a — co.
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