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We obtain, for entire functions of exponential type, a complementary result and
a generalization of a quadrature formula with nodes at the zeros of Bessel functions.
Our formula contains a sequence of rational fractions whose properties are
studied. � 1998 Academic Press

1. INTRODUCTION

Given any complex number :, the function

J:(z)
z: = :

�

k=0

(&1)k

2:+2kk! 1(k+:+1)
z2k (1)

is an even entire function of exponential type 1. Here J:(z) is the Bessel
function of the first kind of order :. Let jk= jk(:), k=\1, \2, ..., be the
zeros of J:(z)�z: ordered such that j&k=& jk and 0<| j1 |�| j2 |� } } } .

An exact quadrature formula with zeros of Bessel functions as nodes has
been proved in [2].
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Theorem A. Let R(:)>&1. For all entire functions f of exponential
type 2{ such that f (x)=O( |x|&$), x � \�, with $>2R(:)+2, we have

|
�

0
x2:+1( f (x)+ f (&x)) dx

=
2

{2:+2 :
�

k=1

j 2:
k

(J $:( jk))2 \ f \ jk

{ ++ f \&
jk

{ ++ . (2)

The growth condition on f has been relaxed in [3] assuming that
:>&1.

Theorem B. If :>&1 then (2) holds for every entire function f of
exponential type 2{ such that x2:+1( f (x)+ f (&x)) belongs to L1[0, �).

In this paper we first obtain a complementary result related to (2). We
also give a result which may be seen as a generalization of (2).

2. STATEMENT OF THE RESULTS

We note that the right-hand side of (2) vanishes whenever f (z) is
replaced by (J:({z)�({z):) f (z). Also, the asymptotic formula [6, Sect. 7.21]

J:(z)=\ 2
?z+

1�2

cos \z&
:?
2

&
?
4++O \ 1

|z| 3�2+ , z # R, z � �

implies that J:(x)=O( |x|&1�2), x � \�. Thus, if f is an entire function of
exponential type { such that f (x)=O( |x|&$), x � \�, with $>R(:)+ 3

2 ,
R(:)>&1, then

|
�

0
x:+1J:({x)( f (x)+ f (&x)) dx=0. (3)

Applying (3) to a function of the form 1�x2( f (x)& f (0)), where f may
be supposed to be even, and using the formula (see [6, p. 391])
��

0 x:&1J:(x) dx=2:&11(:), we obtain

f (0)=
{:

2:1(:) |
�

0
x:&1J:({x)( f (x)+ f (&x)) dx. (4)
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The particular case :=&1
2 of (3), applied to f (z) and f (z&(?�2{)),

readily leads us to the formula [4, p. 109]

|
�

&�
ei{xf (x) dx=0.

Also, applying (4) with := 1
2 , we obtain the well-known formula

[5, p. 109]

f (0)=
1
? |

�

&�

sin({x)
x

f (x) dx.

Note that we obtain the last two formulae under the growth condition
f (x)=O( |x|&$), x � \�, respectively with $>1 and $>0, although these
formulae are valid for more general functions.

Our first theorem is a generalization of (4).

Theorem 1. Let p be a nonnegative integer and R(:)>p. For all entire
functions f of exponential type { such that f (x)=O( |x|&$), x � \�, with
$>R(:)&2p& 1

2 , we have

|
�

0
x:&2p&1J:({x)( f (x)+ f (&x)) dx

=
1

{:&2p :
p

j=0

2:&2p+2j1(:&p+ j )
( p& j )!

f (2j )(0)
{2j(2j )!

. (5)

The function defined by (1) is called Spherical Bessel function whenever
:=n+ 1

2 , n being an integer. Since 1(n+ 1
2)=- ? (2n)!�22nn!, n=0, 1, 2, ...,

we deduce from Theorem 1 the following

Corollary. Let p and n be nonnegative integers, p�n. For all functions
f of exponential type { such that f (x)=O( |x| &$), x � \�, with $>n&2p,
we have

|
�

&�
xn&2p&1�2Jn+1�2({x) f (x) dx

=
- 2?

{n&2p+1�22nn !
:
p

j=0
\ n

p& j+ (2n&2p+2j)!
f (2j )(0)
{2j(2j )!

. (6)

For p=n, Eq. (6) reduces (with $>&n) to

|
�

&�

Jn+1�2({x)
xn+1�2 f (x) dx=

- 2? {n&1�2

2nn !
:
p

j=0
\n

j+
f (2j )(0)

{2j . (7)
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Before we state our second theorem, it is convenient to introduce some
notations. We set N(0) :=0, N(1) :=0 and

N( p) := :
p

&=2

[ p�&] for p�2. (8)

Here, [a] is the integral part of the real number a. We also set
u(0; :) :=1�: and

u(p; :) :=\2[3p�2]p ! (:&p) `
p

&=1

(:+&)[p�&]+
&1

for p�1. (9)

Theorem 2. Let p be a nonnegative integer and R(:)>p. For all entire
functions f of exponential type 2{ such that f (x)=O( |x|&$), x � \�, with
$>2R(:)&2p, we have

|
�

0
x2:&2p&1( f (x)+ f (&x)) dx

=
2

{2:&2p :
�

k=1

j 2:&2p&2
k

(J $:( jk))2 \ f \ jk

{ ++ f \&
jk

{ ++
+

22:(1(:+1))2

{2:&2p :
p

j=0

u( p& j; :) RN( p& j )(:)
f (2j )(0)
{2j(2j )!

, (10)

where RN( j )(:) is a polynomial in : of degree N( j ) for 0� j�p, whose
leading coefficient is 2[ j�2].

Equation (10), applied to a function of the form (J:({z)�({z):) f (z), gives
a non explicit version of (5). In fact, Theorem 1 will be used to obtain
informations on the sequence e( p; :), p=0, 1, 2, ..., defined by

e( p; :) :=u( p, :) RN( p)(:). (11)

The sequence e( p; :), p=0, 1, 2, ..., satisfies the following recurrence
relation.

Theorem 3. Let : be a complex number, :{0, \1, \2, ..., and let p be
a nonnegative integer. We have e(0; :)=1�: and

e( p+1; :)= :
p

k=0

(&1)k 1(:+1) e( p&k; :)
22k+2(k+1)! 1(:+k+2)

+
1(:&p&1)

22p+2( p+1)! 1(:+1)
. (12)
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From Theorem 3 we will deduce the generating function of the sequence
e( p; :), p=0, 1, 2, ... . This generating function will be used to prove that
the RN( p)(:) of (10) are polynomials in :.

Theorem 4. Let ,:(z) :=2:1(:+1)(J:(z)�z:). We have, for :{0,
\1, \2, ...,

,&:(- z)

:,:(- z)
= :

�

p=0

e( p; :) z p, (13)

where the series converges for |z|<| j1(:)| 2.

3. LEMMAS

The proof of Theorem 1 is based on the following result.

Lemma 1. Let p be a nonnegative integer and p<R(:)<2p+ 1
2 . If

&1�*�1 then we have

|
�

0
x:&2p&1J:(x) cos(*x) dx= :

p

j=0

(&1) j 2:&2p+2j&11(:&p+ j ) *2j

( p& j )! (2j )!
. (14)

Proof. Let ;, +, & be complex numbers and let a, b be real numbers. It
is known [6, Sect. 13.4] that

|
�

0

J+(ax) J&(bx)
x; dx=

2&;b&1(1�2(++&&;+1))
a&& ;+11(&+1) 1(1�2(;++&&+1))

_F \1
2

(++&&;+1),
1
2

(&&;&++1); &+1;
b2

a2+
(15)

provided that 0<b<a and that the integral converges. Here,

F(:, ;; #; z) :=1+
:;
#

z
1!

+
:(:+1) ;(;+1)

#(#+1)
z2

2!
+ } } }

is the Gaussian hypergeometric function. We take, in (15), +=:, &=&1
2 ,

a=1, b=* and ;=&:+2p+ 1
2. We obtain

|
�

0
x:&2p&1J:(x) cos(*x) dx=

2:&2p&1

p !
1(:&p) F \:&p, &p;

1
2

; *2+ ,
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from which (14) follows for 0<*<1. The result holds by continuity for
*=0, 1 and by symmetry for &1�*�0. K

The basic idea, in the proof of Theorem 2, is to apply (2) repeatedly to
a function of the form

g:(z) :=
1
z2 \ f (z)&\2:1(:+1)

J:(z)
z: +

2

f (0)+ , (16)

where f (z) is an even entire function.

Lemma 2. Let f be an even entire function and j a nonnegative integer.
We have

g (2j)
: (0)=

1
(2j+2)(2j+1)

f (2j+2)(0)

+
(&1) j (2j )! (1(:+1))2 1(2:+2j+3)

22j+2( j+1)! 1(2:+ j+2)(1(:+ j+2))2 f (0). (17)

Proof. We use the formula [6, Sect. 5.4]

J 2
:(z)
z2: = :

�

j=0

(&1) j 1(2:+2j+1)
22:+2jj ! 1(2:+ j+1)(1(:+ j+1))2 z2j

in conjunction with

f (z)= :
�

k=0

f (2j)(0)
(2j )!

z2j. K

We wil also need the following result [1, p. 148], known as Faa Di
Bruno's formula.

Lemma 3. We have, for j=1, 2, ...,

(F(G(z))( j )= :
j

r=1

:
?( j, r)

c(k1 , ..., kj) F (r)(G(z)) `
j

&=1

(G (&)(z))k&, (18)

where c(k1 , ..., kj) :=j !�k1 ! } } } kj ! (1!)k1 } } } ( j !)kj and ?( j, r) means that the
summation is extended over all nonnegative integers k1 , ..., kj such that
k1+2k2+ } } } + jkj= j and k1+k2+ } } } +kj=r.

Finally, we prove a crucial lemma, the first step in the proof of
Theorem 2.
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Lemma 4. Under the hypothesis of Theorem 2, we have

|
�

0
x2:&2p&1( f (x)+ f (&x)) dx

=
2

{2:&2p :
�

k=1

j 2:&2p&2
k

(J $:( jk))2 \ f \ jk

{ ++ f \&
jk

{ ++
+

22:(1(:+1))2

{2:&2p :
p

j=0

e( p& j; :)
f (2j )(0)
{2j(2j )!

, (19)

where the e( j; :), 0� j�p, are rational fractions in :.

Proof. Without loss of generality, we may suppose that f (z) is even and
{=1. The function g:(z) defined by (16) is then an even entire function of
exponential type 2.

Now we prove the lemma by induction on p. For p=0, we use (2) where
f is replaced by g: ; we obtain

|
�

0
x2:+1g:(x) dx=2 :

�

k=1

j 2:&2
k

(J $:( jk))2 f ( jk). (20)

For R(:)>0 this equality may be written in the form

|
�

0
x2:&1f (x) dx=2 :

�

k=1

j 2:&2p&4
k

(J $:( jk))2 f ( jk)+
22:(1(:+1))2

2:
f (0) (21)

since [6, p. 403]

|
�

0

J 2
:(x)

x2k+1 dx=
(2k)! 1(:&k)

22k+1(k !)2 1(:+k+1)
(22)

for k=0, 1, 2, ... and R(:)>k. Thus the lemma is valid for p=0 and
e(0; :)=1�:.

Suppose that (19) holds for some positive integer p. Replacing f by g: in
(19), we obtain

2 |
�

0
x2:&2p&1g:(x) dx

=4 :
�

k=1

j 2:&2p&4
k

(J $:( jk))2 f ( jk)+22:(1(:+1))2 :
p

j=0

e( p& j; :)
g (2j )

: (0)
(2j)!

. (23)
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For R(:)>p+1 this equality may be written, by Lemma 2 and (22), in the
form

2 |
�

0
x2:&2p&3f (x) dx

=4 :
�

k=1

j 2:&2p&4
k

(J $:( jk))2 f ( jk)

+22:(1(:+1))2 \ :
p

j=0

e( p& j; :)
f (2j+2)(0)
(2j+2)!

+e( p+1; :) f (0)+ , (24)

where

e( p+1; :) := :
p

j=0

(&1) j (1(:+1))2 1(2:+2j+3) e( p& j; :)
22j+2( j+1)! 1(2:+ j+2)(1(:+ j+2))2

+
(2p+2)! 1(:& p&1)

22p+2(( p+1)!)2 1(:+ p+2)
. (25)

Obviously, if each e( p& j; :), 0� j�p, is a rational fraction in :, so is
e( p+1; :). This completes the proof of the lemma. K

4. PROOFS OF THE THEOREMS

Proof of Theorem 1. According to the classical theorem of Paley and
Wiener, an entire function of exponential type {, which belongs to
L2(&�, �), has a representation of the form

f (z)=|
{

&{
eizt�(t) dt, (26)

where � # L2(&{, {). So, using Lemma 1,

|
�

0
x:&2p&1J:(x) \ f \x

{++ f \&
x
{++ dx

=2 |
�

0
|

{

&{
x:&2p&1J:(x) cos \tx

{ + �(t) dt dx

=|
{

&{
:
p

j=0

(&1) j 2:&2p+2j1(:&p+ j )
( p& j )! (2j ) ! {2j t2j�(t) dt

= :
p

j=0

2:&2p+2j1(:&p+j )
( p& j)!

f (2j )(0)
{2j(2j )!

, (27)
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which proves Theorem 1 in the case f # L2(&�, �). In general we con-
sider a function of the form (sin(=z)�=z)m f (z), for some positive integer m,
and let = � 0. The passage to the limit is easily justifiable. K

The relation (25) is a recurrence relation for the sequence e( p; :),
p=0, 1, ... . Theorem 3 gives a simpler one.

Proof of Theorem 3. Given an entire function of exponential type {=1
such that f (x)=O( |x|&$), x � \�, with $>R(:)&2p&1�2, the function
h(z) :=(J:(z)�z:) f (z) satisfies the hypothesis of Lemma 4. Hence,

|
�

0
x:&2p&1J:(x)( f (x)+ f (&x)) dx

=22:(1(:+1))2 :
p

j=0

e( p& j; :)
h(2j )(0)

(2j )!

=2:(1(:+1))2 :
p

j=0

:
j

k=0

(&1) j&k e( p& j; :)
22j&2k( j&k)! 1(:+ j&k+1)

f (2j )(0)
(2j )!

=2:(1(:+1))2 :
p

j=0

:
p& j

k=0

(&1)k e( p& j&k; :)
22kk ! 1(:+k+1)

f (2j)(0)
(2j )!

. (28)

It follows from Theorem 1 that

(1(:+1))2 :
p

j=0

:
p& j

k=0

(&1)k e( p& j&k; :)
22kk ! 1(:+k+1)

f (2j )(0)
(2j )!

= :
p

j=0

22j&2p1(:&p+ j)
( p& j )!

f (2j)(0)
(2j )!

. (29)

Since f is arbitrary, we conclude that

(1(:+1))2 :
p& j

k=0

(&1)k e( p& j&k; :)
22kk ! 1(:+k+1)

=
22j&2p1(:& p+ j )

( p& j )!
,

(30)

0� j�p,

which is equivalent to (12) for R(:)>p. Since both sides of (12) are
rational fractions in :, it is clear that this formula remains valid for any
:{0, \1, \2, ... . K

Proof of Theorem 4. Let E:(z) :=��
p=0 e( p; :) z p. Multiplying both

sides of (12) by z p+1 and summing over p=0, 1, 2, ..., we obtain
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:
�

p=0

e( p+1; :) z p+1= :
�

p=0

:
p

k=0

(&1)k 1(:+1) e( p&k; :)
22k+2(k+1)! 1(:+k+2)

z p+1

+ :
�

p=0

1(:&p&1)
22p+2( p+1)! 1(:+1)

z p+1. (31)

Permutting the order of summation, we get, after some obvious changes of
variables,

E:(z)&
1
:

=E:(z) :
�

p=1

(&1) p&1 1(:+1)
22pp ! 1(:+ p+1)

z p+ :
�

p=1

1(:& p)
22pp ! 1(:+1)

z p, (32)

whence

E:(z) :
�

p=0

(&1) p 1(:+1)
22pp! 1(:+ p+1)

z p= :
�

p=0

1(:& p)
22pp! 1(:+1)

z p. (33)

We have

:
�

p=0

(&1) p

22pp ! 1(:+ p+1)
z p=2: J:(- z)

(- z):
.

Also, using the relation 1(w) 1(1&w)=?�sin(?w) with w=:& p, we see
that

:
�

p=0

1(:&p)

22pp !
z p=

?2&:

sin(?:)

J&:(- z)

(- z)&:
.

We then deduce from (33) that

E:(z)=
?

22: sin(?:)(1(:+1))2

z:J&:(- z)

J:(- z)
, (34)

which reduces to (13) after another application of the relation 1(w) 1(1&w)
=?�sin(?w) with w=&:. K

Proof of Theorem 2. It remains to prove, in view of Lemma 4, that the
functions RN( p)(:), p=0, 1, 2, ..., appearing in the right-hand side of (10),
are polynomials in : of degree N( p) with leading coefficient 2[ p�2]. The
function RN( p)(:) is related to e( p; :) by (11); it is thus a rational fraction
in :.

Our first goal is to obtain an explicit formula for RN( p)(:). It is clear,
from Theorem 3, that RN(0)(:)=1. We may thus assume that p is a positive
integer. We have, using the generating function (13),
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p ! e( p; :)=
1
: \

,&:(- z)

,:(- z) +
( p)

(z=0)

=
1(:& p)

22p1(:+1)
+ :

p

j=1
\p

j+
1(:&p+ j )

22p&2j1(:+1) \
1

,:(- z)+
( j )

(z=0). (35)

We use Lemma 3 with F(z)=1�z, G(z)=,:(- z) and z=0. We obtain a
formula for (1�,:(- z))( j ) (z=0) which, once we substitute in (35), results
in

p! e( p; :)=
1(:& p)

22p1(:+1)
+ :

p

j=1

:
j

r=1

:
?( j, r)

\p
j+ (&1)r+ jr ! c(k1 , ..., kj)

_
1(:& p+ j )
22p1(:+1)

`
j

&=1
\ 1(:+1)

1(:+&+1)+
k&

. (36)

So, we obtain the explicit formula

RN( p)(:)=2[3p�2](:&p) `
p

&=1

(:+&)[ p�&] \ 1(:&p)
22p1(:+1)

+ :
p

j=1

:
j

r=1

:
?( j, r) \

p
j+

_(&1)r+ j r ! c(k1 , ..., kj)
1(:&p+ j )
22p1(:+1)

`
j

&=1
\ 1(:+1)

1(:+&+1)+
k&

+ .

(37)

In (37), each term of the form

`
p

&=1

(:+&)[ p�&] `
j

&=1
\ 1(:+1)

1(:+&+1)+
k&

= `
p

&=1

(:+&)[ p�&] `
j

&=1

(:+&)&(k&+ } } } +kj)

is, for 1� j� p, a polynomial in :; indeed, we have

k&+ } } } +kj�
1
&

(&k&+ } } } + jkj)�j�&�p�&, 1�&� j,

and so [ p�&]&(k&+ } } } +kj)�0. It then follows from (37) that the only
possible poles of the rational fraction RN( p)(:) are :=0, 1, ..., ( p&1).

Now we will show that

lim
: � k

(:&k) RN( p)(:)=0, k=0, 1, ..., ( p&1), (38)

from which we infer that no pole of RN( p)(:) could exist.
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The left-hand side of (38) can be evaluated from (37); we find that

lim
: � k

(:&k) RN( p)(:)=
(&1) p&k 2[3p�2]&2p(k& p)

k !
`
p

&=1

(k+&)[ p�&]

_\ 1
( p&k)!

+ :
p&k

j=1

:
j

r=1

:
?( j, r)

\p
j+

_
(&1)r r ! c(k1 , ..., kj)

( p&k& j)!
`

j

&=1
\ k !

(k+&)!+
k&

+ . (39)

Next we will prove that the right-hand side of (39) is equal to zero. Let

hk(z) :=
Jk(2i - z)

(2i - z)k
= :

�

&=0

1

2k& ! (k+&)!
z&.

We have, for k=0, 1, ..., p&1,

0=(zk)( p) (z=0)=\zkhk(z)
hk(z) +

( p)

(z=0)

= :
p

j=0
\p

j+ (zkhk(z))( p& j ) (z=0) \ 1
hk(z)+

( j )

(z=0)

=k ! \ 1
( p&k)!

+ :
p&k

j=1

:
j

r=1

:
?( j, r) \

p
j+

(&1)r r ! c(k1 , ..., kj)
( p&k& j )!

`
j

&=1 \
k !

(k+&)!+
k&

+ .

Thus (38) holds. It is clear from (37) that RN( p)(:) has degree N( p)=
� p

&=2[ p�&]. Its leading coefficient is

lim
: � �

RN( p)(:)
:N( p) =2[3p�2]&2p \1+ :

p

j=1

:
j

r=1

:
?( j, r) \

p
j+ (&1)r+ jr ! c(k1 , ..., kj)+

=2[ p�2],

where the last step uses Lemma 3 with F(z)=1�z, G(z)=e&z and z=0.
This completes the proof of Theorem 2. K

5. CONCLUDING REMARKS

In this final section we make some additional comments concerning our
results and we give a few examples.
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The special case :=2p+1 of Theorem 1 leads us to the following result:
if f is an entire function of exponential type { such that f (x)=O( |x|&$),
x � \�, with $> 1

2 , then we have

|
�

0
J2p+1({x)( f (x)+ f (&x)) dx

= :
p

j=0 \
p+ j

2j +\2
{+

2j+1

f (2j )(0), p=0, 1, ... . (40)

Applying (5) with p=0 to a function of the form >k
j=1 J+j(aj z)�z+j, we

obtain the following known result [6, p. 419]:

|
�

0
x:&M&1J:({x) `

k

j=1

J+j (aj x) dx=2:&M&1 1(:)
{: `

k

j=1

a+j
j

1(+j+1)
, (41)

where M :=�k
j=1 +j , �k

j=1 |aj |<{ and 0<R(:)<R(M )+k�2+1�2.
The first polynomials appearing in Theorem 2 are R0(:)=1, R1(:)=

2:+5, R2(:)=2:2+13:+23, R4(:)=4:4+56:3+303:2+748:+677,
R5(:)=4:5+84:4+731:3+3319:2+7821:+7313. It is empirically evi-
dent that the coefficients of RN( p)(:) are positive integers. Finally, we note
that e( p; :)=O(1�: p+1) as : � �.

REFERENCES

1. L. Comtet, ``Analyse Combinatoire,'' Vol. 1, Presses Universitaires de France, 1970.
2. C. Frappier and P. Olivier, A quadrature formula involving zeros of Bessel functions,

Math. Comp. 60 (1993), 303�316.
3. G. R. Grozev and Q. I. Rahman, A quadrature formula with zeros of Bessel functions as

nodes, Math. Comp. 64 (1995), 715�725.
4. S. M. Nikol'skii, ``Approximation of Functions of Several Variables and Imbedding

Theorems,'' Springer-Verlag, New York, 1975.
5. E. C. Titchmarsh, ``Introduction to the Theory of Fourier Integrals,'' 2nd ed., Clarendon,

Oxford, 1948.
6. G. N. Watson, ``A Treatise on the Theory of Bessel Functions,'' 2nd ed., Cambridge Univ.

Press, Cambridge, 1966.

279EXPLICIT QUADRATURE FORMULAE


